RELATIVITY AND COSMOLOGY 1

Solutions to Problem Set 8 Fall 2023

1. Gravitational Redshift

(a)

(b)

Since the geometry is static, so are geodesics. If the first photon took 7} time in
these coordinates to go from Alice to Bob, the second photon will take the same
amount of time.

We are evaluating the proper time of two events that happened at the same spatial
point. We thus need to compute

dr2(8,,8,) = —ds*(9,,0,) = (1 + 2®(x, y, 2))dt>. (1)

The finite interval will thus be given by
ATy = /dT =/1+20(x)At. (2)

Analogously, for Bob

At = /dT — /1 4 20 (%) AL . (3)

Comparing them, we get

ATB 1 —|— 2(I) f
— = 1+2(9 —O(Ty)) =1+ P(Xp) — O(T,). 4
A A\ Troa) SV (T4)) ~ 1+ ®(Tp) = D(Fa).  (4)
That means that if Alice and Bob measure this interval of time in their respec-
tive reference frames, they will see a difference proportional to the gradient of the
gravitational field between them.

The electromagnetic wave produced by Alice would have wavelength A4 = T4 (re-
member that ¢ = 1). The wavelength of the light received by Bob would be

Ap = (1 +@(Zp) — P(Za))Aa. (5)

To interpret this answer, consider the case in which the two observers are orbiting
around a planet. The Newtonian protential for this system is ®(7) = —“%. The
formula becomes

A\p rg—1Ta
— =1 M )
)\A +G raATB (6)

If r4 > rg Bob observes a blueshift in the light, if 74 < rp he observes a redshift.

As there is no explicit dependence on time in metric components, d;g = 0, shifting
the coordinates by ¢ is indeed an isometry.
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(g) The geodesic equations (for an affine parametrisation) are derived from the func-

tional variations of

Slt,z,y,2] = /d)\ G THa” . (7)

In classical mechanics With coordinates ¢, if the Lagrangian L(q, ¢) does not depend
explicitely in ¢, then L is a constant of motion, as follows from the Euler-Lagrange
equations. Here exactly the same idea applies and L = g, %" does not depend on
t, hence

oL . :
g = 29Mtl'u = 29ttt (8)
is a constant of motion, i.e.
d dt
—((1+2P)— | =0.
lavem) —o )

Alternatively, the geodesic equation for coordinate ¢ is
d*t da'’ dt
L s
axe N dx

with ¢ = 1,2, 3. Expanding the Christoffel I'}, = ; +§>¢

&2t dri di
1420) %t 090
(1+ )d)\2+a Y

=0,

Using the chain rule &-CD‘% = d/\ ® and product rule, this is equivalent to

ddA ((1+2<I>)5§\> —0. (10)

This implies ¢ = g, V' = (1 + 2@) is a constant of motion.

Another way to show it is by using the covariant derivative expression of Geodesics.

For an affinely parametrized geodesic X*(\), we have that V# = % satisfies :

VED, (V") =0 (11)

Let us now write € = V,£# where {# = §}' are the components of the killing vector 9.
By definition, the Killing vectors satisfies D¢, + D,§, = 0. Putting it all together

V“D#(Vl’fl,) - VuDu(Vy)fv + VﬂV”Du(fl/) (12)
The first term vanishes by the affine geodesic equation, the second by the killing
equation. By V#D,, = 4L (chain rule), we have the result.

The four-velocities of Alice and Bob are Uy = \/jat and Ug = \/%ék

1+2% 1+2®(z4)
respectively. The d¢ component of conjugate momentum of photon is p; = g V* = «.
Therefore,

g
Ey=pU) = ———
1+ Q(I)(l’A)

£
Ep=plUp = ————



Eliminating € among these equations give

Ep=,—FF 13
PN+ 20(ap) (13)
or in terms of wavelength they measure,
AB = | —————A 14
BN 1 420(zs) (14)

The energy relation holds for any particle, not only photons.

2. The Bianchi Identity

(a)

We prove this in reverse. Start from
VirBupe =0
ViRupe — VuRrvpe +VRyrpe = ViRyupe — ViRrpe + Vo Rrpe =0
ViR +VRoovr +V Rpgyr +ViRyg + ViuRyrpe + VyRygry =0
VR +VuRpour + VyRyrpe =0,
where from the second to the third line we used the symmetries of the Riemann

tensor to write every term with the indices in the orders that appear on the Problem
Set.

(15)

The first identity is nothing else than the definition of the Riemann tensor from
the action of the commutator of covariant derivatives acting on a (0,2) tensor. In
general,

[Vm VU]A#V - _R)\upaA)\V - R)\upaAlM ) <16)
which explains the equation. For the second one, we act with a covariant derivative
on the action of the Riemann tensor on a dual vector

Vp[vm VH]VZ, = vp<_R)\ V/\)

Vo

= -W\V,R,, — R\, V,Vi.

vou

(17)

This is true simply because on both sides of the equation we are subtracting [p, o, ]
and the antisymmetrization of one of its odd permutations. Infact,

Dipop) = Digpu] = 2D(pop) - (18)

Consider that, an equivalent way to write
VieVoVV, =V, V,VuV, =V, V.V, V, = V,V, V1V, (19)
is
[V[pa VJ]VM}VV = V[p[vm vu]]vu (20)

This is nothing else than the Jacobi identity. Applying the formulas from before,
we get that it is equivalent to

—R@W]wvy — P&VWVM Vi = —VAV[,,RAWW] — RAVWV,,] Vi, (21)

which is the equation that we wanted.
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(e) The first term on the left hand side of (21) vanishes by the symmetries of the
Riemann tensor. The second term on the left hand side of (21) exactly cancels the
second term on its right hand side. We are left with

V)‘v[pR)\‘VWN] — 0 . (22)

We can write
VAV R0 = VIV B = VAV Ropa (23)

so that (22) for a generic vector V' implies
Vi Royw =0, (24)
which we had argued is equivalent to the Bianchi identity.
(f) Start from the original form of the Bianchi identity
VR +VRpour +VyRyory = 0. (25)

We take two traces

gmjng<vTRpo,ul/ + v,u,RpazzT + VVRpO'T,LL) =0

VR, —V,R+V°R;, =0 (26)
VG, =0,
as we wanted to prove.
3. The Coriolis Force
(a) By the chain rule, the velocity u’ = dd—”f can be expressed as
det  datd\
= — . 27
dt dX dt (27)
The trajectory @* = 0 implies
dt dx’
at _ —¢ 28
- € (28)

where ¢; and ¢; are constants. This makes the velocity

dzt ¢

dt N Ct (29)
constant as well.
(b) We use the Euler-Lagrange equations
d oL 0L
XD~ dan (30)



The right hand side is trivially 0, as the Lagrangian does not explicitly depend on
position. The left hand side gives

A0 Al (1w (e
2

A\Oir — d\  9ir T dA J—masded? O A\ [y piod?
(31)
As @* = 0, the expression in last brackets is constant, so %% =0

Alternatively, since the Lagrangian does not depend on x*, it is a cyclic variable,

and so by Noether’s theorem % is a constant.
Let’s start by applying the chain rule % = g;:, ‘fj’;\” twice

. d (dz* d [0x" dxt de* d ozt Ozt dPat
x# = — _— = — 7 - e 7 + / - (32)
dX \ dX dX \ OzH dA d\ d\Oox+  OxH  dN?
det dz” O%xt ozt APzt po OPak oxt .,
_ _plw p 33
N A A R P R (33)
Therefore, by multiplying geodesic equation 0 = & by %ﬁ‘: one gets
81’”/ ’ 81““'/ a2$’u RV ’ / Y
BNty ) AR e ) AR
Sl =& 5o gy L & =8 +1va" @ (34)
with F’V‘: V= gifﬁ/ aﬁ%giy . Note that this is the same value one gets from computing
Christoffel symbols for g, = gf:, gf:, Nuw
From the transformation laws, we find how differentials transform
dt = dt/
dz = cos(wt')dx’ + sin(wt’)dy’ + w (v’ cos(wt’) — &’ sin(wt')) dt’ (35)

dy = —sin(wt’)dx’ + cos(wt')dy’ — w (' cos(wt’) + ¢/ sin(wt’)) dt’
dz =d7".

The line element in the new rotating system of reference is thus

ds* = —(1—w? (2" 4y?))dt* 4wy (dt'dz’ +d2’dt) —wa' (dt'dy' +dy/dt’ ) +da* +dy* +d 2" .
(36)

To find the Christoffel symbols we use what we found

ozt 92xh

Fﬁl/}\/ — A A N
oxt Ozv' Ox

(37)

It will help to consider that the inverse transformation is given by a rotation by an
angle of opposite sign

t/ t

| | zcos(wt) — ysin(wt) (39)
y | | xsin(wt) + ycos(wt) |

Z z



By staring at (37) it should become clear that Fz,y, = I’ZI/V, = 0 for all sets of lower
indices. The non-vanishing terms are

v = —r'w?,
Fy/// - — ,wz
t/t yw, (39)
e, =w
y/t/ — )
Fg’t’ = —Ww.
The equations of motion become
=0
& — 2w t? + 2wt =0
1 (40)

i —y'wi? — 2t's’ =0
2 =0

From the first equation we get ¢/(\) = aA +b. Using the chain rule, we can cast the
equations of motion for 2’ and ¢y’ in terms of derivatives with respect to t’.

d (jrds’ 2 2 pdy
PN (t’d—ﬁ) — r'w?a® + 2wt'd—yta =0 (41)
. d/ . !
4 (t’%) — ywia® — 2wi'a =0
which reduce to

2’ 2. dy’
ggf;’—wx—de—q (42)
dtZJz = W2y, + 2&)%

The first term in each equation represents a force that pushes the particle away
from the center of the reference frame, and grows with its radial distance from the
center: that is the centrifugal force. The remaining terms are proportional to the
perpendicular velocity: they represent the Coriolis force. As you can see, in GR all
the fictituous forces that appear in non-inertial frames are encoded in the geometry
of spacetime.



