
RELATIVITY AND COSMOLOGY I
Solutions to Problem Set 8 Fall 2023

1. Gravitational Redshift

(a) Since the geometry is static, so are geodesics. If the first photon took T1 time in
these coordinates to go from Alice to Bob, the second photon will take the same
amount of time.

(b) We are evaluating the proper time of two events that happened at the same spatial
point. We thus need to compute

dτ 2(∂t, ∂t) = −ds2(∂t, ∂t) = (1 + 2Φ(x, y, z))dt2 . (1)

The finite interval will thus be given by

∆τA =
∫

dτ =
√

1 + 2Φ( ~xA)∆t . (2)

(c) Analogously, for Bob

∆τB =
∫

dτ =
√

1 + 2Φ( ~xB)∆t . (3)

(d) Comparing them, we get

∆τB

∆τA

=

√√√√1 + 2Φ(~xB)
1 + 2Φ(~xA) ≈

√
1 + 2 (Φ(~xB) − Φ(~xA)) ≈ 1 + Φ(~xB) − Φ(~xA) . (4)

That means that if Alice and Bob measure this interval of time in their respec-
tive reference frames, they will see a difference proportional to the gradient of the
gravitational field between them.

(e) The electromagnetic wave produced by Alice would have wavelength λA = TA (re-
member that c = 1). The wavelength of the light received by Bob would be

λB ≈ (1 + Φ(~xB) − Φ(~xA))λA . (5)

To interpret this answer, consider the case in which the two observers are orbiting
around a planet. The Newtonian protential for this system is Φ(~x) = −GN M

r
. The

formula becomes
λB

λA

≈ 1 + GM
rB − rA

rArB

. (6)

If rA > rB Bob observes a blueshift in the light, if rA < rB he observes a redshift.

(f) As there is no explicit dependence on time in metric components, ∂tg = 0, shifting
the coordinates by t is indeed an isometry.
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(g) The geodesic equations (for an affine parametrisation) are derived from the func-
tional variations of

S[t, x, y, z] =
∫

dλ gµν ẋµẋν . (7)

In classical mechanics with coordinates q, if the Lagrangian L(q, q̇) does not depend
explicitely in q, then ∂L

∂q̇
is a constant of motion, as follows from the Euler-Lagrange

equations. Here exactly the same idea applies and L = gµν ẋµẋν does not depend on
t, hence

∂L

∂ṫ
= 2gµtẋ

µ = 2gttṫ (8)

is a constant of motion, i.e.

d

dλ

(
(1 + 2Φ) dt

dλ

)
= 0 . (9)

Alternatively, the geodesic equation for coordinate t is

d2t

dλ2 + 2Γt
it

dxi

dλ

dt

dλ
= 0 ,

with i = 1, 2, 3. Expanding the Christoffel Γt
it = ∂iΦ

1+2Φ one can write

(1 + 2Φ) d2t

dλ2 + 2∂iΦ
dxi

dλ

dt

dλ
= 0 ,

Using the chain rule ∂iΦdxi

dλ
= dΦ

dλ
and product rule, this is equivalent to

d

dλ

(
(1 + 2Φ) dt

dλ

)
= 0 . (10)

This implies ε = gttV
t = (1 + 2Φ) dt

dλ
is a constant of motion.

Another way to show it is by using the covariant derivative expression of Geodesics.
For an affinely parametrized geodesic Xµ(λ), we have that V µ = dXµ

dλ
satisfies :

V µDµ(V ν) = 0 (11)

Let us now write ε = Vµξµ where ξµ = δµ
t are the components of the killing vector ∂t.

By definition, the Killing vectors satisfies Dµξν + Dνξµ = 0. Putting it all together
:

V µDµ(V νξν) = V µDµ(V ν)ξν + V µV νDµ(ξν) (12)
The first term vanishes by the affine geodesic equation, the second by the killing
equation. By V µDµ ≡ d

dλ
(chain rule), we have the result.

(h) The four-velocities of Alice and Bob are UA = 1√
1+2Φ(xA)

∂t and UB = 1√
1+2Φ(xA)

∂t

respectively. The dt component of conjugate momentum of photon is pt = gttV
t = ε.

Therefore,

EA = ptU
t
A = ε√

1 + 2Φ(xA)

EB = ptU
t
B = ε√

1 + 2Φ(xB)
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Eliminating ε among these equations give

EB =

√√√√1 + 2Φ(xA)
1 + 2Φ(xB)EA (13)

or in terms of wavelength they measure,

λB =

√√√√1 + 2Φ(xB)
1 + 2Φ(xA)λA (14)

The energy relation holds for any particle, not only photons.

2. The Bianchi Identity

(a) We prove this in reverse. Start from

∇[τ Rµν]ρσ = 0
∇τ Rµνρσ − ∇µRτνρσ + ∇µRντρσ − ∇τ Rνµρσ − ∇νRµτρσ + ∇νRτµρσ = 0
∇τ Rρσµν + ∇µRρσντ + ∇µRρσντ + ∇τ Rρσµν + ∇νRµτρσ + ∇νRρστµ = 0

∇τ Rρσµν + ∇µRρσντ + ∇νRµτρσ = 0 ,

(15)

where from the second to the third line we used the symmetries of the Riemann
tensor to write every term with the indices in the orders that appear on the Problem
Set.

(b) The first identity is nothing else than the definition of the Riemann tensor from
the action of the commutator of covariant derivatives acting on a (0, 2) tensor. In
general,

[∇ρ, ∇σ]Aµν = −Rλ
µρσAλν − Rλ

νρσAµλ , (16)
which explains the equation. For the second one, we act with a covariant derivative
on the action of the Riemann tensor on a dual vector

∇ρ[∇σ, ∇µ]Vν = ∇ρ(−Rλ
νσµVλ)

= −Vλ∇ρRλ
νσµ − Rλ

νσµ∇ρVλ .
(17)

(c) This is true simply because on both sides of the equation we are subtracting [ρ, σ, µ]
and the antisymmetrization of one of its odd permutations. Infact,

D[ρσµ] − D[σρµ] = 2D[ρσµ] . (18)

(d) Consider that, an equivalent way to write

∇[ρ∇σ∇µ]Vν − ∇[σ∇ρ∇µ]Vν = ∇[ρ∇σ∇µ]Vν − ∇[ρ∇µ∇σ]Vν (19)

is
[∇[ρ, ∇σ]∇µ]Vν = ∇[ρ[∇σ, ∇µ]]Vν (20)

This is nothing else than the Jacobi identity. Applying the formulas from before,
we get that it is equivalent to

−Rλ
[µρσ]∇λVν − Rλ

ν[ρσ∇µ]Vλ = −Vλ∇[ρRλ
|ν|σµ] − Rλ

ν[σµ∇ρ]Vλ , (21)

which is the equation that we wanted.
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(e) The first term on the left hand side of (21) vanishes by the symmetries of the
Riemann tensor. The second term on the left hand side of (21) exactly cancels the
second term on its right hand side. We are left with

Vλ∇[ρRλ
|ν|σµ] = 0 . (22)

We can write
Vλ∇[ρRλ

|ν|σµ] = V λ∇[ρR|λν|σµ] = V λ∇[ρRσµ]λν , (23)

so that (22) for a generic vector V implies

∇[ρRσµ]λν = 0 , (24)

which we had argued is equivalent to the Bianchi identity.

(f) Start from the original form of the Bianchi identity

∇τ Rρσµν + ∇µRρσντ + ∇νRρστµ = 0 . (25)

We take two traces

gσνgρτ (∇τ Rρσµν + ∇µRρσντ + ∇νRρστµ) = 0
∇ρRρµ − ∇µR + ∇σRσµ = 0

∇ρGρµ = 0 ,

(26)

as we wanted to prove.

3. The Coriolis Force

(a) By the chain rule, the velocity ui = dxi

dt
can be expressed as

dxi

dt
= dxi

dλ

dλ

dt
. (27)

The trajectory ẍµ = 0 implies

dt

dλ
= ct ,

dxi

dλ
= ci , (28)

where ct and ci are constants. This makes the velocity

dxi

dt
= ci

ct

(29)

constant as well.

(b) We use the Euler-Lagrange equations

d

dλ

∂L
∂ẋµ

= ∂L
∂xµ

. (30)
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The right hand side is trivially 0, as the Lagrangian does not explicitly depend on
position. The left hand side gives

d

dλ

∂L
∂ẋµ

= d

dλ

∂
√

−ηαβẋαẋβ

∂ẋµ
= d

dλ

(
1

2
√

−ηαβẋαẋβ

−ηγδ∂
(
ẋγẋδ

)
∂ẋµ

)
= d

dλ

(
−ηµγẋγ√
−ηαβẋαẋβ

)
(31)

As ẍµ = 0, the expression in last brackets is constant, so d
dλ

∂L
∂ẋµ = 0.

Alternatively, since the Lagrangian does not depend on xµ, it is a cyclic variable,
and so by Noether’s theorem ∂L

∂ẋµ is a constant.

(c) Let’s start by applying the chain rule dxµ

dλ
= ∂xµ

∂xµ′
dxµ′

dλ
twice

ẍµ = d

dλ

(
dxµ

dλ

)
= d

dλ

(
∂xµ

∂xµ′

dxµ′

dλ

)
= dxµ′

dλ

d

dλ

∂xµ

∂xµ′ + ∂xµ

∂xµ′

d2xµ′

dλ2 = (32)

= dxµ′

dλ

dxν′

dλ

∂2xµ

∂xµ′∂xν′ + ∂xµ

∂xµ′

d2xµ′

dλ2 = ẋµ′
ẋν′ ∂2xµ

∂xµ′∂xν′ + ∂xµ

∂xµ′ ẍ
µ′ (33)

Therefore, by multiplying geodesic equation 0 = ẍµ by ∂xµ′

∂xµ one gets

∂xµ′

∂xµ
ẍµ = ẍµ′ + ∂xµ′

∂xµ

∂2xµ

∂xν′∂xλ′ ẋ
ν′

ẋλ′ = ẍµ′ + Γµ′

ν′λ′ẋν′
ẋλ′ (34)

with Γµ′

ν′λ′ = ∂xµ′

∂xµ
∂2xµ

∂xν′ ∂xλ′ . Note that this is the same value one gets from computing
Christoffel symbols for gµ′ν′ = ∂xµ

∂xµ′
∂xν

∂xν′ ηµν

(d) From the transformation laws, we find how differentials transform
dt = dt′

dx = cos(ωt′)dx′ + sin(ωt′)dy′ + ω (y′ cos(ωt′) − x′ sin(ωt′)) dt′

dy = − sin(ωt′)dx′ + cos(ωt′)dy′ − ω (x′ cos(ωt′) + y′ sin(ωt′)) dt′

dz = dz′ .

(35)

The line element in the new rotating system of reference is thus

ds2 = −(1−ω2(x′2+y′2))dt′2+ωy′(dt′dx′+dx′dt′)−ωx′(dt′dy′+dy′dt′)+dx′2+dy′2+dz′2 .
(36)

(e) To find the Christoffel symbols we use what we found

Γµ′

ν′λ′ = ∂xµ′

∂xµ

∂2xµ

∂xν′∂xλ′ . (37)

It will help to consider that the inverse transformation is given by a rotation by an
angle of opposite sign 

t′

x′

y′

z′

 =


t

x cos(ωt) − y sin(ωt)
x sin(ωt) + y cos(ωt)

z

 . (38)
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By staring at (37) it should become clear that Γt′
µ′ν′ = Γz′

µ′ν′ = 0 for all sets of lower
indices. The non-vanishing terms are

Γx′

t′t′ = −x′ω2 ,

Γy′

t′t′ = −y′ω2 ,

Γx′

y′t′ = ω ,

Γy′

x′t′ = −ω .

(39)

The equations of motion become
ẗ′ = 0
ẍ′ − x′ω2ṫ′2 + 2ωẏ′ṫ′ = 0
ÿ′ − y′ω2ṫ′2 − 2ωṫ′ẋ′ = 0
z̈′ = 0

(40)

From the first equation we get t′(λ) = aλ + b . Using the chain rule, we can cast the
equations of motion for x′ and y′ in terms of derivatives with respect to t′ .

d
dλ

(
ṫ′ dx′

dt

)
− x′ω2a2 + 2ωṫ′ dy′

dt
a = 0

d
dλ

(
ṫ′ dy′

dt

)
− y′ω2a2 − 2ωṫ′ dx′

dt
a = 0

(41)

which reduce to 
d2x′

dt′2 = ω2x′ − 2ω dy′

dt′

d2y′

dt′2 = ω2y′ + 2ω dx′

dt′

(42)

The first term in each equation represents a force that pushes the particle away
from the center of the reference frame, and grows with its radial distance from the
center: that is the centrifugal force. The remaining terms are proportional to the
perpendicular velocity: they represent the Coriolis force. As you can see, in GR all
the fictituous forces that appear in non-inertial frames are encoded in the geometry
of spacetime.
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